

## **Biostatistics 112 – Chapter 1 Summary**

#### Introduction to Biostatistics

## **Learning Outcomes**

After completing this chapter, you should be able to:

- 1. Understand the key concepts and terminology of biostatistics.
- 2. Classify different types of samples taken from a population.
- 3. Recognize the definition of a research study and an experiment.
- 4. Appreciate the role of computers in statistical data analysis.

## 1.1 Introduction & Basic Concepts

- **Statistics:** The science of collecting, organizing, summarizing, analyzing, and drawing conclusions from data.
- **Data:** The raw material of statistics, obtained either by **counting** (e.g., number of patients) or **measuring** (e.g., blood pressure).

## 1.2 Descriptive vs. Inferential Statistics

- **Descriptive Statistics:** Methods for organizing, presenting, and summarizing data. *Example:* Frequency tables, graphs, averages.
- **Inferential Statistics:** Methods for making conclusions about a population based on information from a sample.
  - *Example:* Testing whether a new drug is effective using a sample of patients.

## **Sources of Data**

- **Records:** Routine organizational logs (e.g., hospital records).
- Surveys: Questionnaires, interviews.
- **Experiments:** Testing medical strategies or treatments.
- External Sources: Published reports, scientific literature, or databases.

#### Statistics vs. Biostatistics

- Statistics: General tools and methods for analyzing data.
- **Biostatistics:** Application of these tools specifically to biological and medical sciences.

#### **Data and Variables**

- **Variable:** A characteristic that can take different values among individuals (e.g., age, gender).
- Qualitative Variables (Categorical):
  - Nominal: Categories without order (e.g., blood type).
  - o Ordinal: Categories with order (e.g., pain level: mild, moderate, severe).
- Quantitative Variables (Numerical):
  - o Discrete: Whole numbers (e.g., number of patients).
  - Continuous: Can take any value (e.g., weight, height).

## **Random Variables**

- Random Variable: A variable whose values occur by chance.
  - o **Discrete:** Number of daily hospital admissions.
  - o Continuous: Weight of newborn babies.

## Population vs. Sample

- **Population:** The entire group of interest (all patients in a hospital).
- Sample: A subset of the population (50 patients chosen from the hospital).
- Why Samples? Less costly, less time-consuming, sometimes population is infinite, or measurement may destroy units (e.g., blood samples).

#### **Measurement Scales**

- Nominal: Categories only (e.g., gender, blood type).
- **Ordinal:** Categories with order (e.g., satisfaction level).
- Interval: Meaningful differences, but no true zero (e.g., temperature, IQ).
- Ratio: Meaningful differences with a true zero (e.g., weight, height, dosage).

## **Sampling Methods**

- Simple Random Sampling: Every unit has equal chance of selection.
- Systematic Random Sampling: Select every *k-th* unit.
- Stratified Random Sampling: Divide population into strata (groups) and sample proportionally.

#### **Statistical Inference**

- **Definition:** Drawing conclusions about a population based on sample data.
- Research Study: Collecting and analyzing data systematically.
- **Experiment:** Manipulating conditions and observing outcomes (e.g., treatment vs. control group).

## **Scientific Method & Experiments**

- Accuracy/Validity: Correctness of measurement.
- Precision/Reliability: Consistency of measurement.
- **Treatment Group:** Receives the treatment.
- Control Group: Does not receive the treatment (placebo).

## **Computers in Biostatistics**

- Computers perform statistical analysis faster and more accurately.
- Software like MS Excel/MegaStat will be used for data analysis in this course.

# **■** Biostatistics 112 – Chapter 1 Practice Questions

#### Part A – Basic Concepts (Q1–10)

- 1. Statistics is the science of:
  - A) Collecting data
  - B) Organizing data
  - C) Analyzing data
  - D) All of the above
  - Answer: D Statistics covers all these steps.
- 2. Data can be defined as:
  - A) Raw material of statistics
  - B) Results of counting or measurement
  - C) Both A and B
  - D) None
  - Answer: C Data are numbers obtained by counting or measuring.
- 3. Which of the following is **not** a source of data?
  - A) Surveys
  - B) Hospital records
  - C) Experiments
  - D) Astrology books
  - Answer: D Astrology is not a scientific source.
- 4. **Biostatistics** is mainly applied in:
  - A) Banking
  - B) Biological & medical sciences
  - C) Engineering
  - D) Astronomy
  - Answer: B.
- 5. Descriptive statistics deals with:
  - A) Summarizing data
  - B) Making decisions about populations
  - C) Conducting experiments
  - D) None

- Answer: A.
- 6. **Inferential statistics** is used when:
  - A) Studying a whole population
  - B) Studying a sample to generalize to the population
  - C) Organizing graphs
  - D) Describing medical records only
  - Answer: B.
- 7. Which one is qualitative data?
  - A) Weight
  - B) Height
  - C) Blood group
  - D) Age
  - ✓ Answer: C Blood group is categorical.
- 8. Which of the following is quantitative discrete?
  - A) Weight of a baby
  - B) Number of patients in a ward
  - C) Blood pressure
  - D) Temperature
  - Answer: B.
- 9. A random variable is:
  - A) Always predictable
  - B) Cannot be measured
  - C) Value determined by chance
  - D) Not useful in biostatistics
  - Answer: C.
- 10. A **continuous random variable** example:
  - A) Number of students
  - B) Shoe size
  - C) Birth weight
  - D) Number of pills taken
  - Answer: C.

## Part B - Population, Samples, & Measurement (Q11-20)

- 11. A **population** in statistics refers to:
  - A) The largest collection of values or entities of interest

- B) A small sample of patients
- C) The study tool used
- D) A group of doctors
- Answer: A.
- 12. A sample is:
  - A) The whole population
  - B) A subset of the population
  - C) Always infinite
  - D) Not related to population
  - Answer: B.
- 13. One reason to use a sample instead of a population is:
  - A) It is cheaper and faster
  - B) Populations are always infinite
  - C) Populations cannot be studied
  - D) Samples give less valid results
  - Answer: A.
- 14. Which is an ordinal scale variable?
  - A) Gender
  - B) Blood type
  - C) Pain severity (mild, moderate, severe)
  - D) Temperature
  - Answer: C.
- 15. Which is **nominal scale**?
  - A) Blood type
  - B) Weight
  - C) Age
  - D) Height
  - Answer: A.
- 16. Interval scale does **not** have:
  - A) Ordered values
  - B) Equal intervals
  - C) True zero
  - D) Numerical meaning
  - ✓ **Answer: C** Interval scale zero is arbitrary (e.g., temperature).
- 17. Ratio scale has:
  - A) True zero
  - B) No meaning of zero
  - C) No order

- D) Only qualitative data
- Answer: A.
- 18. Example of interval scale:
  - A) Blood group
  - B) Temperature (°C)
  - C) Weight
  - D) Height
  - Answer: B.
- 19. Example of ratio scale:
  - A) IQ score
  - B) Temperature
  - C) Weight
  - D) Blood group
  - Answer: C.
- 20. Likert scale responses (e.g., agree-disagree) are treated as:
  - A) Nominal
  - B) Ordinal
  - C) Interval
  - D) Ratio
  - Answer: B.

#### Part C - Sampling Methods & Studies (Q21-30)

- 21. Simple random sampling means:
  - A) Each member has equal chance of selection
  - B) Selecting only healthy subjects
  - C) Selecting groups instead of individuals
  - D) Choosing every 10th unit
  - Answer: A.
- 22. Systematic random sampling is:
  - A) Every k-th element selected
  - B) Divide into strata then sample
  - C) Everyone included
  - D) Always biased
  - Answer: A.

#### 23. Stratified random sampling is useful when:

- A) Population is homogeneous
- B) Population has clear subgroups
- C) Only one variable exists
- D) Randomness is not required
- Answer: B.

#### 24. An **experiment** differs from a research study because:

- A) It uses interviews
- B) It manipulates variables
- C) It avoids randomization
- D) It ignores treatment groups
- Answer: B.

#### 25. A research study example:

- A) Giving one group placebo and another group drug
- B) Observing tea consumption habits and sleep times
- C) Assigning random doses to groups
- D) None of the above
- Answer: B.

#### 26. A treatment group is:

- A) Group that gets placebo
- B) Group that gets the actual treatment
- C) Always the control group
- D) Not randomly assigned
- Answer: B.

#### 27. A control group is:

- A) Group not exposed to treatment
- B) Group exposed to maximum dose
- C) Group that is always larger
- D) Irrelevant to experiments
- Answer: A.

#### 28. **Precision** refers to:

- A) Correctness of measurement
- B) Consistency of measurement
- C) Random error
- D) Validity
- Answer: B.

#### 29. **Accuracy** refers to:

A) Correctness of measurement

- B) Consistency of measurement
- C) Reliability only
- D) None
- Answer: A.
- 30. Which is an example of sampling without replacement?
  - A) Choosing a student, recording his name, then putting it back
  - B) Drawing blood and using the same sample again
  - C) Selecting patients from a hospital and not repeating them
  - D) Random number generation
  - Answer: C.

#### Part D - Computers & Applications (Q31-40)

- 31. Which software is suggested in the course for analysis?
  - A) SPSS
  - B)R
  - C) Excel/MegaStat
  - D) Stata
  - Answer: C.
- 32. Computers are useful in biostatistics because:
  - A) Faster than humans
  - B) More accurate
  - C) Can generate random numbers
  - D) All of the above
  - Answer: D.
- 33. Which of the following is **not** a role of computers in statistics?
  - A) Performing calculations
  - B) Data visualization
  - C) Collecting blood samples
  - D) Generating random samples
  - Answer: C.
- 34. Which term indicates "correctness of measurement"?
  - A) Reliability
  - B) Precision
  - C) Validity
  - D) Randomness

- Answer: C.
- 35. Which term indicates "consistency of measurement"?
  - A) Reliability
  - B) Accuracy
  - C) Validity
  - D) Randomization
  - Answer: A.
- 36. In medical research, biostatistics is most useful for:
  - A) Making assumptions without data
  - B) Analyzing experimental results
  - C) Avoiding data collection
  - D) None
  - Answer: B.
- 37. An **infinite population** example is:
  - A) All students in a classroom
  - B) All humans alive today
  - C) Possible blood pressure values
  - D) Patients in a hospital ward
  - Answer: C.
- 38. A finite population example is:
  - A) All bacteria in the world
  - B) Students enrolled in a university
  - C) Possible IQ values
  - D) All numbers between 0 and 1
  - Answer: B.
- 39. If researchers divide patients into smokers and non-smokers, then sample from each group, they are using:
  - A) Simple random sampling
  - B) Stratified sampling
  - C) Systematic sampling
  - D) Convenience sampling
  - Answer: B.
- 40. In a hospital, if researchers select every 5th patient from a list, they are using:
  - A) Stratified sampling
  - B) Simple random sampling
  - C) Systematic sampling
  - D) Cluster sampling

Answer: C.

That's 40 MCQs with answers and short reasoning based directly on Chapter 1.

Do you want me to also **prepare them in an exam-style PDF** (with space for student answers, then a separate answer key at the end)?